Sie suchten nach: Methyl-N-acetyl-L-leucinate


56 951  results were found

SearchResultCount:"56951"

Sort Results

Listenansicht Hybridansicht (NEU)

Bewerten Sie das Suchergebnis

Artikel-Nr: (BOSSBS-0483R-CY7)
Lieferant: Bioss
Beschreibung: Histones are highly conserved proteins that serve as the structural scaffold for the organization of nuclear DNA into chromatin. The four core histones, H2A, H2B, H3, and H4, assemble into an octamer (2 molecules of each). Subsequently, 146 base pairs of DNA are wrapped around the octamer, forming a nucleosome, the basic subunit of chromatin. Histone modifications regulate DNA transcription, repair, recombination, and replication. The most commonly studied modifications are acetylation, phosphorylation, methylation, and ubiquitination. These modifications can alter local chromatin architecture, or recruit trans-acting factors that recognize specific histone modifications (the "histone code" hypothesis). Trimethylation of histone H3 on Lys9 (H3K9me3) is one of the most highly studied epigenetic marks. H3K9me3 functions in the repression of euchromatic genes, and in epigenetic control of heterochromatin assembly, most likely via acting as a recognition motif for the binding of chromatin-associated proteins, such as Swi6 or HP1Alpha/Beta. The enzymes responsible for H3K9me3 formation are SUV39H1 and SUV39H2.
UOM: 1 * 100 µl


Artikel-Nr: (BOSSBS-0483R-A647)
Lieferant: Bioss
Beschreibung: Histones are highly conserved proteins that serve as the structural scaffold for the organization of nuclear DNA into chromatin. The four core histones, H2A, H2B, H3, and H4, assemble into an octamer (2 molecules of each). Subsequently, 146 base pairs of DNA are wrapped around the octamer, forming a nucleosome, the basic subunit of chromatin. Histone modifications regulate DNA transcription, repair, recombination, and replication. The most commonly studied modifications are acetylation, phosphorylation, methylation, and ubiquitination. These modifications can alter local chromatin architecture, or recruit trans-acting factors that recognize specific histone modifications (the "histone code" hypothesis). Trimethylation of histone H3 on Lys9 (H3K9me3) is one of the most highly studied epigenetic marks. H3K9me3 functions in the repression of euchromatic genes, and in epigenetic control of heterochromatin assembly, most likely via acting as a recognition motif for the binding of chromatin-associated proteins, such as Swi6 or HP1Alpha/Beta. The enzymes responsible for H3K9me3 formation are SUV39H1 and SUV39H2.
UOM: 1 * 100 µl


Artikel-Nr: (BNUM0957-50)
Lieferant: Biotium
Beschreibung: Eukaryotic histones are basic and water-soluble nuclear proteins that form hetero-octameric nucleosome particles by wrapping 146 base pairs of DNA in a left-handed super-helical turn sequentially to form chromosomal fiber. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form the octamer; formed of two H2A-H2B dimers and two H3-H4 dimers, forming two nearly symmetrical halves by tertiary structure. Over 80% of nucleosomes contain the linker Histone H1, derived from an intronless gene that interacts with linker DNA between nucleosomes and mediates compaction into higher order chromatin. Histones are subject to posttranslational modification by enzymes primarily on their N-terminal tails, but also in their globular domains. Such modifications include methylation, citrullination, acetylation, phosphorylation, sumoylation, ubiquitination and ADP-ribosylation.
UOM: 1 * 50 µl


Artikel-Nr: (BOSSBS-0483R-CY5.5)
Lieferant: Bioss
Beschreibung: Histones are highly conserved proteins that serve as the structural scaffold for the organization of nuclear DNA into chromatin. The four core histones, H2A, H2B, H3, and H4, assemble into an octamer (2 molecules of each). Subsequently, 146 base pairs of DNA are wrapped around the octamer, forming a nucleosome, the basic subunit of chromatin. Histone modifications regulate DNA transcription, repair, recombination, and replication. The most commonly studied modifications are acetylation, phosphorylation, methylation, and ubiquitination. These modifications can alter local chromatin architecture, or recruit trans-acting factors that recognize specific histone modifications (the "histone code" hypothesis). Trimethylation of histone H3 on Lys9 (H3K9me3) is one of the most highly studied epigenetic marks. H3K9me3 functions in the repression of euchromatic genes, and in epigenetic control of heterochromatin assembly, most likely via acting as a recognition motif for the binding of chromatin-associated proteins, such as Swi6 or HP1Alpha/Beta. The enzymes responsible for H3K9me3 formation are SUV39H1 and SUV39H2.
UOM: 1 * 100 µl


Artikel-Nr: (BOSSBS-0483R-FITC)
Lieferant: Bioss
Beschreibung: Histones are highly conserved proteins that serve as the structural scaffold for the organization of nuclear DNA into chromatin. The four core histones, H2A, H2B, H3, and H4, assemble into an octamer (2 molecules of each). Subsequently, 146 base pairs of DNA are wrapped around the octamer, forming a nucleosome, the basic subunit of chromatin. Histone modifications regulate DNA transcription, repair, recombination, and replication. The most commonly studied modifications are acetylation, phosphorylation, methylation, and ubiquitination. These modifications can alter local chromatin architecture, or recruit trans-acting factors that recognize specific histone modifications (the "histone code" hypothesis). Trimethylation of histone H3 on Lys9 (H3K9me3) is one of the most highly studied epigenetic marks. H3K9me3 functions in the repression of euchromatic genes, and in epigenetic control of heterochromatin assembly, most likely via acting as a recognition motif for the binding of chromatin-associated proteins, such as Swi6 or HP1Alpha/Beta. The enzymes responsible for H3K9me3 formation are SUV39H1 and SUV39H2.
UOM: 1 * 100 µl


Artikel-Nr: (BOSSBS-0483R-A488)
Lieferant: Bioss
Beschreibung: Histones are highly conserved proteins that serve as the structural scaffold for the organization of nuclear DNA into chromatin. The four core histones, H2A, H2B, H3, and H4, assemble into an octamer (2 molecules of each). Subsequently, 146 base pairs of DNA are wrapped around the octamer, forming a nucleosome, the basic subunit of chromatin. Histone modifications regulate DNA transcription, repair, recombination, and replication. The most commonly studied modifications are acetylation, phosphorylation, methylation, and ubiquitination. These modifications can alter local chromatin architecture, or recruit trans-acting factors that recognize specific histone modifications (the "histone code" hypothesis). Trimethylation of histone H3 on Lys9 (H3K9me3) is one of the most highly studied epigenetic marks. H3K9me3 functions in the repression of euchromatic genes, and in epigenetic control of heterochromatin assembly, most likely via acting as a recognition motif for the binding of chromatin-associated proteins, such as Swi6 or HP1Alpha/Beta. The enzymes responsible for H3K9me3 formation are SUV39H1 and SUV39H2.
UOM: 1 * 100 µl


Artikel-Nr: (BOSSBS-0483R-HRP)
Lieferant: Bioss
Beschreibung: Histones are highly conserved proteins that serve as the structural scaffold for the organization of nuclear DNA into chromatin. The four core histones, H2A, H2B, H3, and H4, assemble into an octamer (2 molecules of each). Subsequently, 146 base pairs of DNA are wrapped around the octamer, forming a nucleosome, the basic subunit of chromatin. Histone modifications regulate DNA transcription, repair, recombination, and replication. The most commonly studied modifications are acetylation, phosphorylation, methylation, and ubiquitination. These modifications can alter local chromatin architecture, or recruit trans-acting factors that recognize specific histone modifications (the "histone code" hypothesis). Trimethylation of histone H3 on Lys9 (H3K9me3) is one of the most highly studied epigenetic marks. H3K9me3 functions in the repression of euchromatic genes, and in epigenetic control of heterochromatin assembly, most likely via acting as a recognition motif for the binding of chromatin-associated proteins, such as Swi6 or HP1Alpha/Beta. The enzymes responsible for H3K9me3 formation are SUV39H1 and SUV39H2.
UOM: 1 * 100 µl


Artikel-Nr: (BOSSBS-0483R-A350)
Lieferant: Bioss
Beschreibung: Histones are highly conserved proteins that serve as the structural scaffold for the organization of nuclear DNA into chromatin. The four core histones, H2A, H2B, H3, and H4, assemble into an octamer (2 molecules of each). Subsequently, 146 base pairs of DNA are wrapped around the octamer, forming a nucleosome, the basic subunit of chromatin. Histone modifications regulate DNA transcription, repair, recombination, and replication. The most commonly studied modifications are acetylation, phosphorylation, methylation, and ubiquitination. These modifications can alter local chromatin architecture, or recruit trans-acting factors that recognize specific histone modifications (the "histone code" hypothesis). Trimethylation of histone H3 on Lys9 (H3K9me3) is one of the most highly studied epigenetic marks. H3K9me3 functions in the repression of euchromatic genes, and in epigenetic control of heterochromatin assembly, most likely via acting as a recognition motif for the binding of chromatin-associated proteins, such as Swi6 or HP1Alpha/Beta. The enzymes responsible for H3K9me3 formation are SUV39H1 and SUV39H2.
UOM: 1 * 100 µl


Lieferant: Thermo Scientific
Beschreibung: Methyl-4-acetyl-1,2,5-trimethylpyrrol-3-carboxylat

Artikel-Nr: (SIAL533610-25G)
Lieferant: Merck
Beschreibung: 2-Acetyl-5-methylthiophen, Sigma-Aldrich®
UOM: 1 * 25 g


Artikel-Nr: (BOSSBS-0483R-A750)
Lieferant: Bioss
Beschreibung: Histones are highly conserved proteins that serve as the structural scaffold for the organization of nuclear DNA into chromatin. The four core histones, H2A, H2B, H3, and H4, assemble into an octamer (2 molecules of each). Subsequently, 146 base pairs of DNA are wrapped around the octamer, forming a nucleosome, the basic subunit of chromatin. Histone modifications regulate DNA transcription, repair, recombination, and replication. The most commonly studied modifications are acetylation, phosphorylation, methylation, and ubiquitination. These modifications can alter local chromatin architecture, or recruit trans-acting factors that recognise specific histone modifications (the 'histone code' hypothesis). Trimethylation of histone H3 on Lys9 (H3K9me3) is one of the most highly studied epigenetic marks. H3K9me3 functions in the repression of euchromatic genes, and in epigenetic control of heterochromatin assembly, most likely via acting as a recognition motif for the binding of chromatin-associated proteins, such as Swi6 or HP1Alpha/Beta. The enzymes responsible for H3K9me3 formation are SUV39H1 and SUV39H2.
UOM: 1 * 100 µl


Artikel-Nr: (BOSSBS-0483R-A680)
Lieferant: Bioss
Beschreibung: Histones are highly conserved proteins that serve as the structural scaffold for the organization of nuclear DNA into chromatin. The four core histones, H2A, H2B, H3, and H4, assemble into an octamer (2 molecules of each). Subsequently, 146 base pairs of DNA are wrapped around the octamer, forming a nucleosome, the basic subunit of chromatin. Histone modifications regulate DNA transcription, repair, recombination, and replication. The most commonly studied modifications are acetylation, phosphorylation, methylation, and ubiquitination. These modifications can alter local chromatin architecture, or recruit trans-acting factors that recognise specific histone modifications (the 'histone code' hypothesis). Trimethylation of histone H3 on Lys9 (H3K9me3) is one of the most highly studied epigenetic marks. H3K9me3 functions in the repression of euchromatic genes, and in epigenetic control of heterochromatin assembly, most likely via acting as a recognition motif for the binding of chromatin-associated proteins, such as Swi6 or HP1Alpha/Beta. The enzymes responsible for H3K9me3 formation are SUV39H1 and SUV39H2.
UOM: 1 * 100 µl


Lieferant: Merck
Beschreibung: 2-Acetyl-5-methylfuran, Sigma-Aldrich®

Artikel-Nr: (SIAL299553-25G)
Lieferant: Merck
Beschreibung: 2-Acetyl-5-methylfuran, Sigma-Aldrich®
UOM: 1 * 25 g


Lieferant: Merck
Beschreibung: 2-Acetyl-1-methylpyrrol, Sigma-Aldrich®

Artikel-Nr: (SIAL249645-5G)
Lieferant: Merck
Beschreibung: 2-Acetyl-3-methylthiophen, Sigma-Aldrich®
UOM: 1 * 5 g


Preis auf Anfrage
Lager für diesen Artikel ist begrenzt, kann aber in einem Lagerhaus in Ihrer Nähe zur Verfügung. Bitte stellen Sie sicher, dass Sie in sind angemeldet auf dieser Seite, so dass verfügbare Bestand angezeigt werden können. Wenn das call noch angezeigt wird und Sie Hilfe benötigen, rufen Sie uns an +43 1 97002 - 0.
Lager für diesen Artikel ist begrenzt, kann aber in einem Lagerhaus in Ihrer Nähe zur Verfügung. Bitte stellen Sie sicher, dass Sie in sind angemeldet auf dieser Seite, so dass verfügbare Bestand angezeigt werden können. Wenn das call noch angezeigt wird und Sie Hilfe benötigen, rufen Sie uns an +43 1 97002 - 0.
Dual Use Güter können nur im EU-Raum geliefert werden.
Dual Use Güter können nur im EU-Raum geliefert werden.
Dieses Produkt wurde von Ihrer Organisation gesperrt.
Dieses Produkt ist Ersatz für den von Ihnen gewünschten Artikel.
Abverkauf Bestand. Der Artikel wird aus dem Programm genommen/ersetzt. Alternative Artikel werden ggf. im Suchergebnis angezeigt oder wenden Sie sich an unseren Kundenservice.
305 - 320 of 56 951
no targeter for Bottom